US 20200366914A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2020/0366914 A1l

Schroers et al.

43) Pub. Date: Nov. 19, 2020

(54) CONTENT ADAPTIVE OPTIMIZATION FOR
NEURAL DATA COMPRESSION

(71)

(72)

@

(22)

(1)

Applicant: Disney Enterprises, Inc., Burbank, CA

Inventors:

Us)

Christopher Schroers, Zurich (CH);
Simon Meierhans, Zurich (CH);
Joaquim Campos, St. Sulpice (CH);
Jared McPhillen, Glendale, CA (US);
Abdelaziz Djelouah, Zurich (CH);
Erika Varis Doggett, Los Angeles, CA
(US); Scott Labrozzi, Cary, NC (US);
Yuanyi Xue, Kensington, CA (US)

Appl. No.: 16/413,414

Filed:

Int. CL.

HO4N 19/42
GO6N 3/02
GO6N 7/00

May 15, 2019

Publication Classification

(2006.01)
(2006.01)
(2006.01)

HO4N 19/513 (2006.01)
HO4N 19/186 (2006.01)
(52) US.CL
CPC oo HO4N 19/42 (2014.11); GO6N 3/02

(2013.01); HO4N 19/186 (2014.11); HO4N
19/513 (2014.11); GO6N 7/005 (2013.01)

(57) ABSTRACT

A data processing system includes a computing platform
having a hardware processor and a memory storing a data
compression software code. The hardware processor
executes the data compression software code to receive a
series of compression input data and encode a first com-
pression input data of the series to a latent space represen-
tation of the first compression input data. The data com-
pression software code further decodes the latent space
representation to produce an input space representation of
the first compression input data corresponding to the latent
space representation, and generates f refined latent values for
re-encoding the first compression input data based on a
comparison of the first compression input data with its input
space representation. The data compression software code
then re-encodes the first compression input data using the
refined latent values to produce a first compressed data
corresponding to the first compression input data.

450

Receive a series of compression input dala L

¥

451

L 4

Encode a first compression input data of the
series 1o & latent space representation of the
first compression input data

A 4

data corresponding fo the
space representation

Becode the latent space representation
o produce an image space representation
of the first compression input

latent
[~ 453

¥

the first compression input d

Generate refined latent values for
re-encoding the first compression
input data based on a comparison of

its image space represeniation

ata with
™~ 454

A 4

Re-encode the first compression input data
using the refined latent values to produce a
first compressed data corresponding to the

first fon input dat
irst compression input data 455

v

Repeat actions 452, 453, 454, and 455
above for a second compression input data
and each subsequent compression

input data of the series 456

Patent Application Publication Nov. 19,2020 Sheet 1 of 6 US 2020/0366914 A1

Fig. 1

100

Computing Platform 102

Hardware Processor (~_ 104

System Memory 106

Data Compression Software Code 110

Neural Decoder 114a I

Neural Encoder 11

Data Source

108 126 128

Compressed Data Receiver

124

Neural Decoder 114

US 2020/0366914 A1

Nov. 19,2020 Sheet 2 of 6

Patent Application Publication

)74

lapooug |einaN

oLe

J

£ Wlumm

Japooa(|eineN

(ix 'Ix)Joziwndo
uonejuasalday Juaie]

§

vz N
epLz

9p0) aiem)jog uoissaldwon ejeq

Patent Application Publication Nov. 19,2020 Sheet 3 of 6 US 2020/0366914 A1

300

'

Data Compression with Content Adaptive Optimization

L A

10:

12:
13:
14:
15:
16:
17:
18:

e H 9

. procedure REFINELATENTS(y, @)

loop until converged:
=y +UC~%= 3)
L= o(y)
L(§) =Y, —logy py, (i) + Ad(«, &)
y =y -+ step(L(u ¢, g, x))
return :
Y
procedure ENCODE(x)
y = ()
y := RefineLatents(y, x)
y = quantize(y)
b:= AE(y)
return :
b
procedure DECODE(b)
z/ = 4D(b)
o)

Patent Application Publication Nov. 19,2020 Sheet 4 of 6 US 2020/0366914 A1

Receive a series of compression input data
451

Encode a first compression input data of the
series to a latent space representation of the

first compression input data
452

Decode the latent space representation
to produce an image space representation
of the first compression input
data corresponding to the latent

space representation 453

Generate refined latent values for
re-encoding the first compression
input data based on a comparison of
the first compression input data with

its image space representation 454

Re-encode the first compression input data
using the refined latent values to produce a
first compressed data corresponding to the
first compression input data

455

Repeat actions 452, 453, 454, and 455
above for a second compression input data
and each subsequent compression

input data of the series 456

450

¥

Patent Application Publication Nov. 19,2020 Sheet 5 of 6 US 2020/0366914 A1

300

¥

Data Compression with Content Adaptive Optimization

1: procedure REFINELATENTS{y, @)

2 1{:}@;‘} 1 i.i‘ﬁt%i converged:

“i %g = sfii} {_;j;;j
I8 o mn

Patent Application Publication Nov. 19,2020 Sheet 6 of 6 US 2020/0366914 A1

Receive a series of compression input data
451

Encode a first compression input data of the
series to a iatent space representation of the
first compression input data

452

Decode the latent space representation
to praduce an image space representation
of the first compression input
data corresponding to the latent

space representation 453

Generate refined latent values for
re-encoding the first compression
input data based on a comparison of
the first compression input data with

its image space representation 454

Re-encode the first compression input data
using the refined latent values to produce a
first compressed data corresponding to the

first ¢ ton input dat
irst compression input data 455

Repeat actions 452, 453, 454, and 455
above for a second compression input data
and each subsequent compression

input data of the series 458

450

¥

US 2020/0366914 Al

CONTENT ADAPTIVE OPTIMIZATION FOR
NEURAL DATA COMPRESSION

BACKGROUND

[0001] A significant fraction of Internet traffic involves the
transmission of video content, and that fraction will likely
continue to increase into the foreseeable future. Because
image compression is at the core of substantially all video
coding approaches, improvements in the compression of
image data are expected to have a significant and beneficial
impact on the transmission of video as well. Traditional
approaches to performing image compression have utilized
compression codecs that rely on hand-crafting of individual
components. More recently, several neural network based
approaches for image compression have been developed.
[0002] In conventional neural network based approaches
to image compression, a rate-distortion objective function is
typically optimized over a corpus of images in order to find
functions for encoding and decoding that are parameterized
by a neural network. Once this optimization is complete, the
training phase for the neural network is concluded and the
encoder function is stored at a sender, while the decoder
function is stored at a receiver.

SUMMARY

[0003] There are provided systems and methods for per-
forming content adaptive optimization for neural data com-
pression, substantially as shown in and/or described in
connection with at least one of the figures, and as set forth
more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 shows a diagram of an exemplary data
processing system for performing content adaptive optimi-
zation for neural data compression, according to one imple-
mentation;

[0005] FIG. 2 shows an exemplary data compression
software code suitable for use by the data processing system
shown in FIG. 1, according to one implementation;

[0006] FIG. 3 shows an exemplary algorithm for use in
performing content adaptive optimization for neural data
compression, according to one implementation; and
[0007] FIG. 4 shows a flowchart presenting an exemplary
method for performing to content adaptive optimization for
neural data compression, according to one implementation.

DETAILED DESCRIPTION

[0008] The following description contains specific infor-
mation pertaining to implementations in the present disclo-
sure. One skilled in the art will recognize that the present
disclosure may be implemented in a manner different from
that specifically discussed herein. The drawings in the
present application and their accompanying detailed
description are directed to merely exemplary implementa-
tions. Unless noted otherwise, like or corresponding ele-
ments among the figures may be indicated by like or
corresponding reference numerals. Moreover, the drawings
and illustrations in the present application are generally not
to scale, and are not intended to correspond to actual relative
dimensions.

[0009] The present application discloses a neural data
compression solution that overcomes the drawbacks and
deficiencies in the conventional art. By contrast, the present

Nov. 19, 2020

application introduces an iterative procedure which adapts
the latent representation encoded by a neural encoder to the
specific content being compressed while keeping the param-
eters of the neural network and the predictive model fixed.
The present solution delivers an overall increase in rate-
distortion performance, independently of the specific archi-
tecture used to implement the neural network.

[0010] Thus, while conventional approaches to improving
neural data compression have focused on more efficient
architectures and predictive models, the content adaptive
optimization approach disclosed in the present application
refines, i.e., improves, the latent representations individu-
ally, on a per-image basis, during the encoding process. Due
to this per-image adaptation, the refined latent image rep-
resentation encoded using the present solution is more
efficient in terms of rate-distortion performance compared to
a latent representation obtained with a simple forward pass
through the neural encoder.

[0011] The solution disclosed in the present application is
general and, as such, can be applied to improve a number of
different architectures for learned data compression. A sig-
nificant advantage of the present neural data compression
solution lies in its enablement of an improved compression
performance while the neural compression network and the
predictive model are kept fixed, and the computing time on
the decoder side remains unchanged.

[0012] It is noted that, as defined in the present applica-
tion, an artificial neural network (ANN), or simply neural
network (NN) is a type of machine learning framework in
which patterns or learned representations of observed data
are processed using highly connected computational layers
that map the relationship between inputs and outputs. A
“deep neural network™, in the context of deep learning, may
refer to a neural network that utilizes multiple hidden layers
between input and output layers, which may allow for
learning based on features not explicitly defined in raw data.
“Online deep learning” may refer to a type of deep learning
in which machine learning models are updated using incom-
ing data streams, and are designed to progressively improve
their performance of a specific task as new data is received
and/or adapt to new patterns of a dynamic system. As such,
various forms of ANNs may be used to make predictions
about new data based on past examples or “training data”. In
various implementations, ANNs may be utilized to perform
image processing or natural-language processing.

[0013] FIG. 1 shows a diagram of an exemplary data
processing system for performing content adaptive optimi-
zation for neural data compression, according to one imple-
mentation. As shown in FIG. 1, data processing system 100
includes computing platform 102 having hardware proces-
sor 104, and system memory 106 implemented as a non-
transitory storage device. According to the present exem-
plary implementation, system memory 106 stores data
compression software code 110 including neural encoder
112 and neural decoder 114a parameterized by an ANN.

[0014] As further shown in FIG. 1, data processing system
100 is implemented within a use environment including
communication network 120, data source 108, and com-
pressed data receiver 126 including neural decoder 1145 and
display 124. Also shown in FIG. 1 are network communi-
cation links 122, series of compression input data 130
received by data processing system 100 from data source
108 via communication network 120, and compressed data

US 2020/0366914 Al

bitstream 128 transmitted by data processing system 100 to
compressed data receiver 126.

[0015] It is noted that, in some implementations, data
processing system 100 may include compressed data
receiver 126, as well as computing platform 102. It is further
noted that neural decoder 1145 of compressed data receiver
126 is substantially identical to neural decoder 114a of data
compression software code 110. That is to say, neural
decoder 1145 is parameterized by the same ANN having the
same architecture used to parametrize neural decoder 114aq.
It is also noted that although data processing system 100
may receive series of compression input data 130 from data
source 108 via communication network 120 and network
communication links 122, in some implementations, data
source 108 may be integrated with computing platform 102,
or may be in direct communication with data processing
system 100 as shown by dashed communication link 118.
[0016] Series of compression input data 130 may include
compressible data in a variety of forms, including images,
audio data, two-dimensional (2D) motion fields, and color
residuals, to name a few examples. In implementations in
which the compression input data corresponds to images, for
example series of compression input data 130 may corre-
spond to a video stream, for example, where each compres-
sion input data is an individual frame of video. However, in
other implementations, each of compression input data 130
may be an individual color value or data describing a 2D
motion.

[0017] Although the present application refers to data
compression software code 110 as being stored in system
memory 106 for conceptual clarity, more generally, data
compression software code 110 may be stored on any
computer-readable non-transitory storage medium. The
expression “computer-readable non-transitory storage
medium,” as used in the present application, refers to any
medium, excluding a carrier wave or other transitory signal,
capable of providing instructions to a hardware processor,
such as hardware processor 104 of computing platform 102,
for example. Thus, a computer-readable non-transitory
medium may correspond to various types of media, such as
volatile media and non-volatile media, for example. Volatile
media may include dynamic memory, such as dynamic
random access memory (dynamic RAM), while non-volatile
memory may include optical, magnetic, or electrostatic
storage devices. Common forms of computer-readable non-
transitory media include, for example, optical discs, RAM,
programmable read-only memory (PROM), erasable PROM
(EPROM), and FLLASH memory.

[0018] Moreover, although FIG. 1 depicts data compres-
sion software code 110 as being stored in its entirety in
system memory 106, that representation is also provided
merely as an aid to conceptual clarity. More generally, data
processing system 100 may include one or more computing
platforms 102, such as computer servers for example, which
may be co-located, or may form an interactively linked but
distributed system, such as a cloud based system, for
instance. As a result, hardware processor 104 and system
memory 106 may correspond to distributed processor and
memory resources within data processing system 100.
[0019] According to the implementation shown by FIG. 1,
data processing system 100 receives series of compression
input data 130 from data source 108 via communication
network 120 and network communication links 122. In one
such implementation, computing platform 102 may corre-

Nov. 19, 2020

spond to one or more web servers, accessible over a packet-
switched network such as the Internet, for example. Alter-
natively, computing platform 102 may correspond to one or
more computer servers supporting a wide area network
(WAN), a local area network (LAN), or included in another
type of private or limited distribution network.

[0020] FIG. 2 shows exemplary data compression soft-
ware code 210 suitable for use by data processing system
100 in FIG. 1, according to one implementation. In addition,
FIG. 2 shows series of compression input data x, . . ., X,
230 received as an input to neural encoder 212, and com-
pressed data bitstream ¥4, . . . , ¥,, 228 provided as an output
by neural encoder 212. As shown in FIG. 2, in addition to
neural encoder 212 including, data compression software
code 210 also includes neural decoder 214a, and latent
representation optimizer 240. Also shown in FIG. 2 are
exemplary first compression input data 232 (x,) of series of
compression input data 230, encoded latent representation
234 (y,) of first compression input data 232, decoded input
space representation 236 (X,) corresponding to encoded
latent representation 234, and first compression input data
refined latent values 238 for re-encoding first compression
input data 232.

[0021] Series of compression input data 230, data com-
pression software code 210 including neural encoder 212
and neural decoder 214a, and compressed data bitstream
228 correspond respectively in general to series of compres-
sion input data 130, data compression software code 110
including neural encoder 112 and neural decoder 114a, and
compressed data bitstream 128, in FIG. 1. That is to say,
series of compression input data 130, data compression
software code 110, and compressed data bitstream 128 may
share any of the characteristics attributed to respective series
of compression input data 230, data compression software
code 210, and compressed data bitstream 228 by the present
disclosure, and vice versa. Thus, although not shown in FIG.
1, data compression software code 110 may include latent
representation optimizer 240.

[0022] It is noted that the goal of lossy data compression
is to find a mapping or encoding function\:X— Y from the
input space X to a latent space representation Y using
neural encoder 112/212 and its reverse mapping or decoding
function ¢: Y —X back to the original input space using
neural decoder 114a/214a/114b. That mapping and reverse
mapping are subject to the following competing constraints:
(1) the latent representation should occupy as little storage
as possible while, (2) the reconstructed image should closely
resemble the original image.

[0023] In neural data compression, this mapping is real-
ized with a neural encoder-decoder pair corresponding to
neural encoder 112/212 and neural decoder 114a/214a/1145,
where the bottleneck values constitute the latent represen-
tation. An image x is first mapped to its latent space
representation y=y(x). After quantization, the resulting
latents ¥ are coded losslessly to a bit stream that can be
decoded into the image X=¢(¥).

[0024] Data compression can be formally expressed as the
minimization of both the expected length of the bitstream, as
well as the expected distortion of the reconstructed image x
compared to the original x, which leads to the optimization
of the following rate-distortion trade-off:

L(p.$.pg)= E x| =108 py(P)+Md(x.5)] (Equation 1)

US 2020/0366914 Al

[0025] Here, —log, py(¥) is the rate and d(x, X) is the
distortion measure, e.g. mean squared error. The rate corre-
sponds to the length of compressed data bitstream 128/228
needed to encode the quantized representation ¥, based on a
learned entropy model p;, over the unknown distribution of
natural compression input data p,. The weight A steers the
rate distortion trade-off, e.g. reducing A leads to a higher
compression rate at the cost of a larger distortion of the
reconstructed image.

[0026] Conventional approaches to improving compres-
sion results have attempted to optimize the neural network
architecture to achieve more powerful encoder/decoder
transformations by neural encoder 112/212 and neural
decoder 114a/214a/11454. In existing approaches, Equation 1
is optimized over a corpus of potentially millions of com-
pression input data in order to find optimal functions for
encoding and decoding (} and ¢), along with a suitable
probability model p,, for the latent space utilized by neural
encoder 112/212 and neural decoder 114a/214a/1145.
[0027] Although neural encoder 112/212 and neural
decoder 114a/214a/114b have been trained over a large
corpus of compression input data to find what should ideally
be an optimal encoding function over the whole data set,
according to the present inventive concepts the encoding can
still be improved by adapting to each individual image.
According to various implementations of the present con-
cepts, this per-image adaptation is performed without chang-
ing neural encoder 112/212 and neural decoder 114a/214a/
1145 or the parameters of their latent space probability
model, but by changing the latent values themselves when
sending compression input data. As such, the novel and
inventive approach disclosed in the present application is
effectively working to solve an optimization problem when
sending compression input data, for each image individually.
For example, for the single image x, the present approach
works to solve the following:

argmin

gmi . . (Equation 2)
T - logzp&(y) + Ad(x, X)

[0028] The fact that the present data compression solution
does not change the probability model utilized by neural
encoder 112/212 and neural decoder 114a/214a/1145 when
performing content adaptive optimization is due to the
assumption that neural decoder 1145 and the probability
model have been trained and deployed to compressed data
receiver 126. Therefore, the present data compression solu-
tion seeks to find the best discrete latent representation for
each image by varying only the latent values themselves.
[0029] There are several practical techniques for solving
this problem, including both discrete and continuous opti-
mization approaches. According to one exemplary imple-
mentation, the optimization problem described by Equation
2 is solved through an iterative procedure where gradient
descent is applied on the latents according to:

Vo1 =PV, L% 9.0, %)

[0030] Here, L(y,p,p;,x) is the rate-distortion objective
for a particular image x:

L. 9pgx)=logops (D) +hd(x.5),

and 7] is the weighting applied to the gradient. This proce-
dure requires a differentiable approximation of the quanti-

(Equation 3)

(Equation 4)

Nov. 19, 2020

zation operation performed in the bottleneck and, in one
implementation, additive uniform noise is used for this
purpose. Adopting the notation U for an independent uni-
form noise of width 1, the density function p; of the random
variable $=y+U(-'%,%%) becomes a continuous differen-
tiable relaxation of the probability mass function py.

[0031] According to one implementation, a complete data
compression pipeline is described by Algorithm 300, in FIG.
3. The lossless arithmetic encoding/decoding operations are
represented by AE/AD. The step function on line 6 corre-
sponds to updating the latent space representation according
to the gradient step obtained from latent representation
optimizer 240. In one implementation, for example, the
latent sgace representation may be updated at a learning rate
of 1 e™.

[0032] Referring now to FIGS. 1 and 2 in combination
with FIG. 4, FIG. 4 shows flowchart 450 presenting an
exemplary method for performing content adaptive optimi-
zation for neural data compression, according to one imple-
mentation. With respect to the method outlined in FIG. 4, it
is noted that certain details and features have been left out
of flowchart 450 in order not to obscure the discussion of the
inventive features in the present application.

[0033] It is noted that neural encoder 112/212 and neural
decoder 1144/214a/1145 may be trained so as to be param-
eterized by an ANN, and neural decoder 1145 and the
probability model utilized by neural encoder 112/212 and
neural decoder 1144/214a/114b may be deployed to com-
pressed data receiver 126, prior to the start of the method
outlined by flowchart 450.

[0034] Flowchart 450 begins with receiving series of
compression input data 130/230 (action 451). As noted
above, series of compression input data 130/230 may
include compressible data in a variety of forms, including
images, audio data, 2D motion fields, and color residuals, to
name a few examples. In implementations in which the
compression input data corresponds to images, for example
series of compression input data 130/230 may correspond to
a video stream, for example, where each of compression
input data 130/230 is an individual frame of video. However,
in other implementations, each of compression input data
130/230 may be an individual color value or data describing
a 2D motion. Series of compression input data 130/230 may
be received by neural encoder 112/212 of data compression
software code 110/210, executed by hardware processor
104.

[0035] As noted above, in some implementations series of
compression input data 130/230 may be received from data
source 108 via communication network 120 and network
communication links 122. However and as also noted above,
in some implementations, data source 108 may be integrated
with computing platform 102, or may be in direct commu-
nication with data processing system 100 as shown by
dashed communication link 118. Thus, in some implemen-
tations, series of compression input data 130/230 may be
received as transfer of data within data processing system
100.

[0036] Flowchart 450 continues with encoding first com-
pression input data 232 of series of compression input data
130/230 to latent space representation 234 of first compres-
sion input data 232 (action 452). First compression input

US 2020/0366914 Al

data 232 of series of compression input data 130/230 may be
encoded to latent space representation 234 of first compres-
sion input data 232 by neural encoder 112/212 of data
compression software code 110/210, executed by hardware
processor 104. As discussed above, neural encoder 112/212
is parameterized during training using an ANN and is
configured to encode first compression input data 232 to
latent space representation 234 of first compression input
data 232.

[0037] Flowchart 450 continues with decoding latent
space representation 234 of first compression input data 232
to produce input space representation 236 of first compres-
sion input data 232 that corresponds to latent space repre-
sentation 234 of first compression input data 232 (action
453). Latent space representation 234 of first compression
input data 232 may be decoded to produce input space
representation 236 of first compression input data 232 by
neural decoder 114a/214a of data compression software
code 110/210, executed by hardware processor 104. As
discussed above, neural decoder 114a/214a, as well as
neural decoder 1145 deployed to compressed data receiver
126, are parameterized during training using an ANN and
are configured to decode latent space representation 234 of
first compression input data 232 to produce input space
representation 236 of first compression input data 232.

[0038] Flowchart 450 continues with generating first com-
pression input data refined latent values 238 for re-encoding
first compression input data 232 based on a comparison of
first compression input data 232 with input space represen-
tation 236 of first compression input data 232 (action 454).
First compression input data refined latent values 238 may
be generated by latent representation optimizer 240 of data
compression software code 110/210, executed by hardware
processor 104, in the manner described above. That is to say,
first compression input data refined latent values 238 may be
generated through comparison of first compression input
data 232 with input space representation 236 of first com-
pression input data 232 based on Equations 2, 3, and 4
above.

[0039] It is emphasized that first compression input data
refined latent values 238 do not change any parameters of
the latent space probability model of neural encoder 112/
212, which is the same latent space probability model used
by neural decoder 114a/214a/1145. Consequently, first com-
pression input data refined latent values 238 do not change
any parameters of latent space representation 234 of first
compression input data 232, only the latent values applied to
those parameters.

[0040] Flowchart 450 continues with, re-encoding first
compression input data 232 using first compression input
data refined latent values 238 to produce first compressed
data 9, corresponding to first compression input data 232
(action 455). First compression input data 232 may be
re-encoded to produce first compressed data §, correspond-
ing to first compression input data 232 by neural encoder
112/212 of data compression software code 110/210,
executed by hardware processor 104.

[0041] Flowchart 450 can conclude with repeating actions
452, 452, 454, and 455 above on a per-image basis on
second compression input data x, and each of subsequent
compression input data x5, . . ., X,, of series of compression
input data 130/230 to produce compressed data compression

Nov. 19, 2020

input data ¥, . . ., ¥, of compressed data bitstream 128/232
(action 456). Actions 452, 453, 454, and 455 may be
repeated for each of compression input data x,, . . . , x,, by
data compression software code 110/210, executed by hard-
ware processor 104, as described above.

[0042] For example, hardware processor 104 may execute
data compression software code 110/210 to encode second
compression input data x, to latent space representation y,
of second compression input data x,, decode latent space
representation y, to produce input space representation X, of
second compression input data x, corresponding to latent
space representation y,, generate second compression input
data refined latent values for re-encoding second compres-
sion input data x, based on a comparison of second com-
pression input data x, with input space representation x, of
second compression input data x, and re-encode second
compression input data x, using the second compression
input data refined latent values to produce second com-
pressed data ¥, corresponding to second compression input
data x,, and so forth for compression input data x5, . . ., X,,.
[0043] It is noted that, although not included in flowchart
450, in some implementations, the present method can
include transmitting compressed data bitstream 128/228
including first compressed data ¥, to compressed data
receiver 126 for decoding by neural decoder 1145 and
rendering by display 124. It is noted that display 124 may be
implemented as a liquid crystal display (LCD), a light-
emitting diode (LED) display, an organic light-emitting
diode (OLED) display, or another suitable display screen
that performs a physical transformation of signals to light.
The transmitting of compressed data bitstream 128/228 to
compressed data receiver 126 for decoding by neural
decoder 1145 and rendering by display 124 may be per-
formed by data compression software code 110/210,
executed by hardware processor 104 of computing platform
102.

[0044] Thus, the present application discloses a content
adaptive optimization solution for neural data compression.
The solution disclosed in the present application introduces
an iterative procedure which adapts the latent representation
encoded by a neural encoder to the specific content being
compressed while advantageously keeping the parameters of
the neural network and the predictive model fixed. The
present solution delivers an overall increase in rate-distor-
tion performance, independently of the specific architecture
used to implement the neural network. Thus, the latent space
adaptation techniques disclosed herein can be an effective
strategy to make a given encoding process more powerful
and content adaptive. This can be particularly advantageous
in use cases such as content streaming, where the encoding
complexity is not the limiting factor when compared to the
transmission and decoding.

[0045] From the above description it is manifest that
various techniques can be used for implementing the con-
cepts described in the present application without departing
from the scope of those concepts. Moreover, while the
concepts have been described with specific reference to
certain implementations, a person of ordinary skill in the art
would recognize that changes can be made in form and detail
without departing from the scope of those concepts. As such,
the described implementations are to be considered in all
respects as illustrative and not restrictive. It should also be
understood that the present application is not limited to the
particular implementations described herein, but many rear-

US 2020/0366914 Al

rangements, modifications, and substitutions are possible
without departing from the scope of the present disclosure.

1. A data processing system comprising:

a computing platform including a hardware processor and
a system memory storing a data compression software
code, a trained neural encoder and a trained neural
decoder;

the hardware processor configured to execute the data

compression software code to:

receive a plurality of compression input data;

encode, using the trained neural encoder, a first com-
pression input data of the plurality of compression
input data to a latent space representation of the first
compression input data;

decode, using the trained neural decoder, the latent
space representation of the first compression input
data to produce an input space representation of the
first compression input data corresponding to the
latent space representation of the first compression
input data;

generate first compression input data refined latent
values based on a comparison of the first compres-
sion input data with the input space representation;
and

re-encode, using the trained neural encoder, the first
compression input data using the first compression
input data refined latent values to produce a first
compressed data corresponding to the first compres-
sion input data.

2. The data processing system of claim 1, wherein the first
compression input data refined latent values do not change
any parameters of the latent space representation of the first
compression input data.

3. The data processing system of claim 1, wherein the
hardware processor is further configured to execute the data
compression software code to:

encode, using the trained neural encoder, a second com-

pression input data of the plurality of compression
input data to a latent space representation of the second
compression input data;
decode, using the trained neural decoder, the latent space
representation of the second compression input data to
produce an input space representation of the second
compression input data corresponding to the latent
space representation of the second compression input
data;
generate second compression input data refined latent
values based on a comparison of the second compres-
sion input data with the input space representation; and

re-encode, using the trained neural encoder, the second
compression input data using the second compression
input data refined latent values to produce a second
compressed data corresponding to the second compres-
sion input data.

4. The data processing system of claim 1, wherein the
plurality of compression input data comprise a plurality of
images.

5. The data processing system of claim 1, wherein the
plurality of compression input data comprise a video stream.

6. The data processing system of claim 1, wherein the
plurality of compression input data comprise one of a
plurality of two-dimensional (2D) motion data or a plurality
of color values.

Nov. 19, 2020

7. The data processing system of claim 1, wherein the
trained neural encoder is parameterized during a-training
using an artificial neural network (ANN) and is configured
to encode the first compression input data to the latent space
representation of the first compression input data.

8. The data processing system of claim 7, wherein the first
compression input data refined latent values do not change
any parameters of a latent space probability model of the
trained neural encoder.

9. (canceled)

10. The data processing system of claim 1, wherein the
trained neural decoder is parameterized during the training
using the ANN and is configured to decode the latent space
representation of the first compression input data to produce
the input space representation of the first compression input
data.

11. The data processing system of claim 10, wherein the
first compression input data refined latent values do not
change any parameters of a same latent space probability
model used by the trained neural encoder and the trained
neural decoder.

12. The data processing system of claim 1, further com-
prising a compressed data receiver remote from the com-
puting platform, the compressed data receiver including a
display and another trained neural decoder substantially
identical to the trained neural decoder, wherein the hardware
processor is further configured to execute the data compres-
sion software code to transmit the first compressed data to
the compressed data receiver for decoding by the another
trained neural decoder and rendering by the display.

13. A method for use by a data processing system includ-
ing a computing platform having a hardware processor and
a system memory storing a data compression software code,
a trained neural encoder and a trained neural decoder, the
method comprising:

receiving, by the data compression software code
executed by the hardware processor, a plurality of
compression input data;

encoding, using the trained neural encoder by the data
compression software code executed by the hardware
processor, a first compression input data of the plurality
of compression input data to a latent space represen-
tation of the first compression input data;

decoding, using the trained neural decoder by the data
compression software code executed by the hardware
processor, the latent space representation of the first
compression input data to produce an input space
representation of the first compression input data cor-
responding to the latent space representation of the first
compression input data;

generating, by the data compression software code
executed by the hardware processor, first compression
input data refined latent values based on a comparison
of the first compression input data with the input space
representation; and

re-encoding, using the trained neural encoder by the data
compression software code executed by the hardware
processor, the first compression input data using the
first compression input data refined latent values to
produce a first compressed data corresponding to the
first compression input data.

US 2020/0366914 Al

14. The method of claim 13, wherein the first compression
input data refined latent values do not change any param-
eters of the latent space representation of the first compres-
sion input data.
15. The method of claim 13, further comprising:
encoding, using the trained neural encoder by the data
compression software code executed by the hardware
processor, a second compression input data of the
plurality of compression input data to a latent space
representation of the second compression input data;

decoding, using the trained neural decoder by the data
compression software code executed by the hardware
processor, the latent space representation of the second
compression input data to produce an input space
representation of the second compression input data
corresponding to the latent space representation of the
second compression input data;

generating, by the data compression software code

executed by the hardware processor, second compres-
sion input data refined latent values based on a com-
parison of the second compression input data with the
input space representation; and

re-encoding, using the trained neural encoder by the data

compression software code executed by the hardware
processor, the second compression input data using the
second compression input data refined latent values to
produce a second compressed data corresponding to the
second compression input data.

16. The method of claim 13, wherein the plurality of
compression input data comprise a plurality of images.

17. The method of claim 13, wherein the plurality of
compression input data comprise a video stream.

Nov. 19, 2020

18. The method of claim 13, wherein the plurality of
compression input data comprise one of a plurality of
two-dimensional (2D) motion data or a plurality of color
values.

19. The method of claim 13, wherein the trained neural
encoder is parameterized during the training using an arti-
ficial neural network (ANN) and is configured to encode the
first compression input data to the latent space representa-
tion of the first compression input data.

20. The method of claim 19, wherein the first compression
input data refined latent values do not change any param-
eters of a latent space probability model of the trained neural
encoder.

21. (canceled)

22. The method of claim 13, wherein the trained neural
decoder is parameterized during the training using the ANN
and is configured to decode the latent space representation of
the first compression input data to produce the input space
representation of the first compression input data.

23. The method of claim 22, wherein the first compression
input data refined latent values do not change any param-
eters of a same latent space probability model used by the
trained neural encoder and the trained neural decoder.

24. The method of claim 13, wherein the data processing
system further comprises a compressed data receiver remote
from the computing platform, the compressed data receiver
including a display and another trained neural decoder
substantially identical to the trained neural decoder, and
wherein the method further comprises transmitting, by the
data compression software code executed by the hardware
processor, the first compressed data to the compressed data
receiver for decoding by the another trained neural decoder
and rendering by the display.

#* #* #* #* #*

